June 17, 2024

CPS

Travel Adventure

Switches in food and beverage product purchases can reduce greenhouse gas emissions in Australia

8 min read
  • Rosenzweig, C. et al. Climate change responses benefit from a global food system approach. Nat. Food 1, 94–97 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Willett, W. et al. Food in the Anthropocene: the EAT–Lancet Commission on healthy diets from sustainable food systems. Lancet 393, 447–492 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Springmann, M. et al. Options for keeping the food system within environmental limits. Nature 562, 519–525 (2018).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Costa, C. et al. Roadmap for achieving net-zero emissions in global food systems by 2050. Sci. Rep. 12, 15064 (2022).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Popkin, B. M. The nutrition transition: an overview of world patterns of change. Nutr. Rev. 62, S140–S143 (2004).

    Article 
    PubMed 

    Google Scholar
     

  • Popkin, B. M. The nutrition transition and obesity in the developing world. J. Nutr. 131, 871s–873ss (2001).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Clark, M. et al. Estimating the environmental impacts of 57,000 food products. Proc. Natl Acad. Sci. USA 119, e2120584119 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Poore, J. & Nemecek, T. Reducing food’s environmental impacts through producers and consumers. Science 360, 987–992 (2018).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Clément, C. W. Copping out on food systems: how COP26 failed to address food and climate and how COP27 can solve it. J. Agric. Environ. Ethics 35, 20 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kennedy, E. et al. Transforming food systems: the missing pieces needed to make them work. Curr. Dev. Nutr. 5, nzaa177 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Heller, M. C., Keoleian, G. A. & Willett, W. C. Toward a life cycle-based, diet-level framework for food environmental impact and nutritional quality assessment: a critical review. Environ. Sci. Technol. 47, 12632–12647 (2013).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Swinburn, B. A. et al. The global syndemic of obesity, undernutrition, and climate change: the Lancet Commission report. Lancet 393, 791–846 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Scarborough, P. et al. Vegans, vegetarians, fish-eaters and meat-eaters in the UK show discrepant environmental impacts. Nat. Food 4, 565–574 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Heller, M. C., Willits-Smith, A., Meyer, R., Keoleian, G. A. & Rose, D. Greenhouse gas emissions and energy use associated with production of individual self-selected US diets. Environ. Res. Lett. 13, 044004 (2018).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Clune, S., Crossin, E. & Verghese, K. Systematic review of greenhouse gas emissions for different fresh food categories. J. Clean. Prod. 140, 766–783 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Grummon, A. H., Lee, C. J. Y., Robinson, T. N., Rimm, E. B. & Rose, D. Simple dietary substitutions can reduce carbon footprints and improve dietary quality across diverse segments of the US population. Nat. Food https://doi.org/10.1038/s43016-023-00864-0 (2023).

  • Godfray, H. C. J. et al. Meat consumption, health, and the environment. Science 361, eaam5324 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Dunford, E. et al. FoodSwitch: a mobile phone app to enable consumers to make healthier food choices and crowdsourcing of national food composition data. JMIR mHealth uHealth 2, e37 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dunford, E. K. & Neal, B. FoodSwitch and use of crowdsourcing to inform nutrient databases. J. Food Compos. Anal. 64, 13–17 (2017).

    Article 

    Google Scholar
     

  • Health Star Rating System 2020. Australian Government (2020); http://www.healthstarrating.gov.au/internet/healthstarrating/publishing.nsf/content/home

  • Monteiro, C., Cannon, G., Levy, R., Moubarac, J.-C. & Jaime, P. NOVA. The star shines bright. Position paper 2. World Nutr. 7, 28–38 (2016).


    Google Scholar
     

  • Monteiro, C. A., Cannon, G., Lawrence, M., Louzada, M. L. D. C. & Machado, P. P. Ultra-processed Foods, Diet Quality, and Health Using the NOVA Classification System (FAO, 2019).


    Google Scholar
     

  • Gaines, A. M. et al. A novel approach to estimate product-specific greenhouse gas emissions for 23,550 Australian packaged foods and beverages. J. Clean. Prod. 425, 138816 (2023).

    Article 
    CAS 

    Google Scholar
     

  • 2016 Census Australia. Australian Bureau of Statistics (ABS, 2023); https://www.abs.gov.au/websitedbs/censushome.nsf/home/2016

  • 6523.0 – Household Income and Wealth Australia. Australian Bureau of Statistics (ABS, 2023); https://www.abs.gov.au/AUSSTATS/abs@.nsf/Lookup/6523.0Main+Features12015-16?OpenDocument

  • Hadjikakou, M. Trimming the excess: environmental impacts of discretionary food consumption in Australia. Ecol. Econ. 131, 119–128 (2016).

    Article 

    Google Scholar
     

  • Coyle, D. H. et al. Contribution of major food companies and their products to household dietary sodium purchases in Australia. Int. J. Behav. Nutr. Phys. Act. 17, 81 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pechey, R. & Monsivais, P. Supermarket choice, shopping behavior, socioeconomic status, and food purchases. Am. J. Prevent. Med. 49, 868–877 (2015).

    Article 

    Google Scholar
     

  • Springmann, M. et al. Health and nutritional aspects of sustainable diet strategies and their association with environmental impacts: a global modelling analysis with country-level detail. Lancet Planet. Health 2, e451–e461 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rippin, H. L. et al. Variations in greenhouse gas emissions of individual diets: associations between the greenhouse gas emissions and nutrient intake in the United Kingdom. PLoS ONE 16, e0259418 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Vellinga, R. E. et al. Different levels of ultraprocessed food and beverage consumption and associations with environmental sustainability and all-cause mortality in EPIC-NL. Am. J. Clin. Nutr. 118, 103–113 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kesse-Guyot, E. et al. Environmental impacts along the value chain from the consumption of ultra-processed foods. Nat. Sustain. 6, 192–202 (2023).

    Article 

    Google Scholar
     

  • About the Sustainable Development Goals. United Nations (2023); https://www.un.org/sustainabledevelopment/sustainable-development-goals/

  • Friel, S., Barosh, L. J. & Lawrence, M. Towards healthy and sustainable food consumption: an Australian case study. Public Health Nutr. 17, 1156–1166 (2014).

    Article 
    PubMed 

    Google Scholar
     

  • Springmann, M. et al. Mitigation potential and global health impacts from emissions pricing of food commodities. Nat. Clim. Change 7, 69–74 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Pan, X.-F. et al. Seventeen-year associations between diet quality defined by the health star rating and mortality in Australians: The Australian Diabetes, Obesity and Lifestyle Study (AusDiab). Curr. Dev. Nutr. 4, nzaa157 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mozaffarian, D. et al. Food Compass is a nutrient profiling system using expanded characteristics for assessing healthfulness of foods. Nat. Food 2, 809–818 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Azaïs-Braesco, V., Goffi, C. & Labouze, E. Nutrient profiling: comparison and critical analysis of existing systems. Public Health Nutr. 9, 613–622 (2006).

    Article 
    PubMed 

    Google Scholar
     

  • Scrinis, G. Nutritionism: The Science and Politics of Dietary Advice 1st edn, 362 (Routledge, 2013).

  • Dickie, S., Woods, J. L., Baker, P., Elizabeth, L. & Lawrence, M. A. Evaluating nutrient-based indices against food- and diet-based indices to assess the health potential of foods: how does the Australian Health Star Rating System perform after five years? Nutrients 12, 1463 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cooper, S. L., Pelly, F. E. & Lowe, J. B. Assessment of the construct validity of the Australian Health Star Rating: a nutrient profiling diagnostic accuracy study. Eur. J. Clin. Nutr. 71, 1353–1359 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cooper, S. L., Pelly, F. E. & Lowe, J. B. Construct and criterion-related validation of nutrient profiling models: a systematic review of the literature. Appetite 100, 26–40 (2016).

    Article 
    PubMed 

    Google Scholar
     

  • Sütterlin, B. & Siegrist, M. Simply adding the word ‘fruit’ makes sugar healthier: the misleading effect of symbolic information on the perceived healthiness of food. Appetite 95, 252–261 (2015).

    Article 
    PubMed 

    Google Scholar
     

  • Whalen, R., Harrold, J., Child, S., Halford, J. & Boyland, E. The health halo trend in UK television food advertising viewed by children: the rise of implicit and explicit health messaging in the promotion of unhealthy foods. Int. J. Environ. Res. Public Health 15, 560 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Schnabel, L. et al. Association between ultraprocessed food consumption and risk of mortality among middle-aged adults in France. JAMA Intern. Med. 179, 490–498 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Elizabeth, L., Machado, P., Zinöcker, M., Baker, P. & Lawrence, M. Ultra-processed foods and health outcomes: a narrative review. Nutrients 12, 1955 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dickie, S., Woods, J., Machado, P. & Lawrence, M. A novel food processing-based nutrition classification scheme for guiding policy actions applied to the Australian food supply. Front. Nutr. 10, 1–15 (2023).


    Google Scholar
     

  • Eating and Activity Guidelines for New Zealand Adults 2020. Manatū Hauora Ministry of Health (2023); https://www.health.govt.nz/system/files/documents/publications/eating-activity-guidelines-new-zealand-adults-updated-2020-oct22.pdf

  • Country of origin labelling. Australian Government Department of Industry, Science and Resources (2023); https://www.industry.gov.au/country-origin-labelling

  • Vandenbergh, M. P., Dietz, T. & Stern, P. C. Time to try carbon labelling. Nat. Clim. Change 1, 4–6 (2011).

    Article 
    ADS 

    Google Scholar
     

  • Grunert, K. G., Hieke, S. & Wills, J. Sustainability labels on food products: consumer motivation, understanding and use. Food Policy 44, 177–189 (2014).

    Article 

    Google Scholar
     

  • Brown, K. A., Harris, F., Potter, C. & Knai, C. The future of environmental sustainability labelling on food products. The Lancet Planet. Health 4, e137–e138 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Miranda-Ackerman, M. A. & Azzaro-Pantel, C. Extending the scope of eco-labelling in the food industry to drive change beyond sustainable agriculture practices. J. Environ. Manage. 204, 814–824 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Faccioli, M. et al. Combined carbon and health taxes outperform single-purpose information or fiscal measures in designing sustainable food policies. Nat. Food 3, 331–340 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Song, M. & Giovannucci, E. Substitution analysis in nutritional epidemiology: proceed with caution. Eur. J. Epidemiol. 33, 137–140 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Ibsen, D. B. et al. Food substitution models for nutritional epidemiology. Am. J. Clin. Nutr. 113, 294–303 (2020).

    Article 

    Google Scholar
     

  • Einav, L., Leibtag, E. & Nevo, A. On the Accuracy of Nielsen Homescan Data. Contract No.: 69 (United States Department of Agriculture, 2008).

  • Lacko, A. M., Guilkey, D., Popkin, B. & Ng, S. W. Associations among select state policies and the nutritional quality of household packaged food purchases in the United States from 2008 through 2017. J. Acad. Nutr. Diet 122, 731–44.e32 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Coyle, D. H. et al. Estimating the potential impact of the Australian government’s reformulation targets on household sugar purchases. Int. J. Behav. Nutr. Phys. Act. 18, 138 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Coyle, D. et al. Estimating the potential impact of Australia’s reformulation programme on households’ sodium purchases. BMJ Nutr. Prevent. Health 4, 49–58 (2021).

    Article 

    Google Scholar
     

  • Trieu, K. et al. Salt reduction initiatives around the world—a systematic review of progress towards the global target. PLoS ONE 10, e0130247-e (2015).

    Article 

    Google Scholar
     

  • Springmann, M. et al. The healthiness and sustainability of national and global food based dietary guidelines: modelling study. Br. Med. J. 370, m2322 (2020).

    Article 

    Google Scholar
     

  • Poti, J. M., Dunford, E. K. & Popkin, B. M. Sodium reduction in US households’ packaged food and beverage purchases, 2000 to 2014. JAMA Intern. Med. 177, 986–994 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dunford, E. K. & Poti, J. M. Simulating the impact of sodium reduction from packaged foods on population sodium intake in US adults and children. Public Health Nutr. 23, 488–495 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Davies, B. & Worrall, S. Basket analysis: profiling British customers. Br. Food J. 100, 102–109 (1998).

    Article 

    Google Scholar
     

  • Hendrie, G. A. et al. Towards healthier and more sustainable diets in the Australian context: comparison of current diets with the Australian Dietary Guidelines and the EAT–Lancet Planetary Health Diet. BMC Public Health 22, 1939 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dunford, E. et al. International collaborative project to compare and monitor the nutritional composition of processed foods. Eur. J. Prev. Cardiol. 19, 1326–1332 (2012).

    Article 
    PubMed 

    Google Scholar
     

  • Slining, M. M., Ng, S. W. & Popkin, B. M. Food companies’ calorie-reduction pledges to improve U.S. diet. Am. J. Prev. Med. 44, 174–184 (2013).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • link

    Copyright © All rights reserved. | Newsphere by AF themes.